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Abstract 

A general method for phase extension and refinement is 
described. It consists of minimizing a conveniently 
defined functional M by the steepest-descent or 
conjugate-gradient techniques. This functional consists 
of a term R = ½~ (IFI - IF °bsl) 2 plus any given 
number of constraint equations selected according to 
the requirements of the particular problem considered. 
Several examples of the introduction of constraints are 
described in detail, both in direct and reciprocal space, 
and a few one-dimensional tests provide insight in the 
behavior of the different alternatives. Also, some 
general features that the calculated electron density 
function should fulfil, such as positivity and bound- 
ness, are directly introduced without the need of terms 
other than R in the functional M. The connection 
between this approach and the ones which use the 
principle of maximum entropy is discussed. A critical 
analysis shows that those methods are just different 
ways of minimizing R with the constraints of positivity. 

Introduction 

We wish to discuss here a general variational procedure 
for phase determination and refinement which is 
operationally related to the methods known under the 
broad denomination of 'electron density modifications' 
[see, for example, the review article by Sayre (1980)]. 

In general, density modifications are iterative pro- 
cedures that can be schematically described, borrowing 
from the notation of Zwick, Bantz & Hughes (1976), in 
the form: 

pj M T S T -l 
,p~ , [Fo(o J , [r~,tp~] ~ p~+~. 

That is, electron density at step j is modified to PJm and 
its Fourier transform calculated; then a synthesis is 
performed (often consisting in simply restoring the 
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moduli of the calculated F's to their observed values) 
and finally the electron density for stepj + 1 is obtained 
by an inverse Fourier transform. The nature of the 
modification operator M and the synthesis operator S 
will in general depend upon the type of information that 
is available or the 'model' of the electron density func- 
tion one would like to adopt. Although this procedure 
may eventually converge in favourable circumstances, 
there is no guarantee that it will do so in general and, 
moreover, there is no way of determining the 'size' of 
the modifications M and S along the refining trajectory 
in order to optimize convergence. 

The method we shall describe is a simple variational 
formalism which aims to overcome these deficiencies. 
The calculus of variations is concerned with the 
problem of determining maxima or minima, or in 
general stationary values of functionals of specific 
argument functions defined in some given domain and, 
as we shall show, virtually all problems related to the 
lack of knowledge of the structure-factor phases in 
crystallography, such as electron density refinement, or 
phase extension, or even ab initio phase calculations, 
can be formulated in its framework. 

A few related methods have been proposed. 
Khachaturyan, Semenovskaya & Vainshtein (1981) 
have described a procedure for ab initio phase 
determination based on equations derived from 
statistical thermodynamic analogies which are solved 
by variational techniques. In general terms, our present 
formalism is closely related to that of these authors. We 
believe, however, that the eventual power of their 
technique lies more on its variational foundations than 
on the physical analogs from which the basic equations 
are derived. In particular, we shall show that their 
method is equivalent to some form of adjusting the 
observed and calculated moduli of the structure factors 
with some specific constraints, which impose positivity 
on the electron density function and bound it between 
the values zero and one. 

Also related to this method are the ones, recently 
introduced in connection with the phase problem, 
which involves the principle of  maximum entropy as 
their fundamental basis. Because of the considerable 
expectation that this last approach has raised due to its 
potential usefulness in protein phase extension and 
© 1983 International Union of Crystallography 
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refinement (Gull & Daniel, 1978; Collins, 1982) and 
even as an alternative procedure for ab initio phase 
determination,* we carried out some three-dimensional 
test calculations in order to compare their performance 
with similar numerical methods based on different 
physical hypotheses. 

In practical numerical calculations the number of 
variables has to be kept necessarily finite (typical 
examples are the values of the electron density at the 
points of a grid in the unit cell) and essentially 
variational problems take the form of ordinary ex- 
tremum problems. The Sayre's well known least- 
squares phase refinement (Sayre, 1972, 1974) is an 
example of a variational calculation which, owing to 
the finite discretization introduced by resolution, has 
been naturally formulated as an ordinary extremum 
problem. 

The procedure that we shall describe aims at a new 
general way of attacking the phase problem. We shall 
show that once a few operational rules are stated, a 
specific procedure can be generated for almost any set 
of conditions that define a particular problem, either in 
direct or reciprocal space. Several previously proposed 
methods can be combined into a general unified frame 
thus gaining in understanding and physical insight. 

A fuller account of practical applications will be the 
subject of a forthcoming publication. 

The variational formalism 

We start be recalling the main concepts of variational 
calculus, which has its origin in the search of extrema 
of functionals rather than extrema of functions of a 
finite number of variables. 

The domain of a functional is a set of admissible 
functions rather than a region of a coordinate space. A 
functional associates a number to the entire course of a 
function which is called the argument function. A 
simple example in crystallography is the value of a 
particular structure factor which can be considered as a 
functional of the electron density p. 

We state now the following variational problem: In a 
given domain of admissible electron density functions p 
find the function for which a given functional is a 
minimum with respect to all argument functions of the 
domain. 

As a specific example let us consider the quadratic 
crystallographic unnormalized R factor 

1 
R = -  Z [ I F ( h ) l -  IF(h)l°bS] 2, (1) 

2 n  

* For the connection between the principle of maximum entropy 
and the maximum determinant rule see Britten & Collins (1982), 
Nayaran & Nityananda (1982), and Piro (1983). 

where I F(h)l is the observed structure-factor mag- 
nitude measured in units of IF(0) l °bs. The F(h) are then 
non-dimensional quantities which we shall relate to a 
non-dimensional electron density function through: 

1 
F(h) = ~ f p(r) exp (-2n/hr) d 3 r (2) 

(where dar denotes the differential volume element), 
and its inverse relationship 

p(r) = Z F(h) exp (2zc/hr). (3) 
n 

This normalization proves very convenient for sub- 
sequent numerical and formal analysis and we shall 
adopt it throughout the paper. As a consequence of (2) 
the true electron density function satisfies the nor- 
malization condition 

1 
f p(r) d 3 r = 1. (4) 

V 

Owing to (2), R can be considered as a functional of p 
and our problem is to find the particular electron 
density function which makes R a minimum. We start by 
calculating the variation of R when p is changed to the 
new function p + fp. fp is called the variation of p. 
According to (1), R changes because each F(h) 
changes with fp so that what we need are the variations 
fF(h): 

1 
fF(h) = --~ f exp (-2n/hr) fp(r) d 3 r. (5) 

We then have 

fiR = ~. [ I F ( h ) l -  IF°bS(h)l] filF(h)] 
h 

1 
= ~ f Y. [IF(h)l - IF°bS(h)l] 

h 

1 
x ~ [F(h) exp (2zffhr) 

21F(h)l 

+ F*(h) exp (-2n/hr)] fp(r) d 3 r. 

Recalling the inversion formula (3) and denoting 

tT(r) Y, iF(h)lOb s F(h) -- ~ exp (2zc/hr), (7) 
h IF(h)l 

we obtain 

1 
fiR = - -  f [p(r) -/~(r)] fp(r) d 3 r, (8) 

V 

which is called the first variation of R, from which the 
functional derivative is defined as 

fR 
- p(r )  - ~(r) .  (9) 

fp(r) 

(6) 
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If no restrictions are imposed on the admissible p's, 
then 0p is any arbitrary variation and a necessary 
condition for a minimum is 

p(r) - ~(r) = O, (10) 

which amounts to stating that the final difference map 
should be flat. A less trivial result is obtained by 
imposing some restrictions on the set of admissible 
density functions. For instance, the very general 
condition that p should be everywhere positive can be 
forced by choosing p = g2/4, g being now an arbitrary 
function. As another example, the choice 

1 
p -  - -  (11) 

l + e  • 

forces p to take values in the range between zero and 
one. Considering now the R factor as a functional of 
the arbitrary function g we get 

OR OR dp 
(12) 

Og(r) Op(r) dg 

and we obtain the extra condition that at a minimum p 
may differ from/~ at the points where dp/dg = O. The 
restrictions defined in the previous examples can also 
be introduced with the technique of the Lagrange 
multipliers and will be discussed later. 

Besides constraints of the type p = p(g), other types 
of electron density restrictions can be easily intro- 
duced. For example, if a protein structure is determined 
at a resolution which permits one to distinguish the 
molecule from the solvent region, then the constraint 
p(r) = constant when r is in the solvent region should 
give an improved (better contrasted) electron density 
map. 

The equation fR(g)/Og(r) = 0 is a condition for a 
stationary point rather than a condition for a minimum. 
A procedure to solve (9) that will ensure that a 
minimum of the functional will be attained is defined by 
the steepest-descent method. By considering 
infinitesimal steps, this method leads to the equation 

3g(r,t) fiR 
c~------~- fg(r,t)' (13) 

where t is a parameter in iteration space. This is 
essentially the evolution equation for the relaxation of 
the thermodynamical system in the method of 
Khachaturyan et al. (1981). 

From (12) and (13) we get 

Og fR dp 
O t -  Op dg' (14) 

which, together with the relationship p = p(g), gives a 
differential equation in terms of p. For example, the 
positivity condition p = g2/4 gives 

0p 
- (p-p')p. (15) 

Ot 

The alternative choice p = e g yields 

9p 
_ (p_p-)p2. (16) 

c~t 

It is clear that (15) and (16) carry the same physical 
information and discrimination of one against the other 
should be based on numerical convenience. For the 
initial condition p > 0, differential equations (15) and 
(16) guarantee that the solutions also will be positive all 
along the pathway in iteration space. 

The behaviour of (15) was explored by means of a 
few numerical one-dimensional test eases. The details 
of the calculations will be given in another section. The 
general pattern of the results can be summarized as 
follows: 

(a) The minimization functional can be made 
virtually zero in almost all cases. 

(b) Except for an origin translation and/or an 
enantiomorphic reversal (the test structures had sym- 
metry P1) all peaks were obtained in the correct 
positions. 

(e) The sizes of the spurious peaks were normally 
quite different from those of the correct ones. 

(d) Spurious peaks, of sizes comparable with those 
of the correct peaks, were sometimes found. 

(e) In general, recognition of the structure became 
more difficult as the number of atoms was increased. 

It was clear from these examples that introduction of 
positivity alone was not restrictive enough to recon- 
struct the electron density function from scratch in 
linear problems with about six atoms. What is rather 
remarkable, however, is that limited success was 
obtained only with the positivity criterion without using 
the very powerful information of atomicity (form 
factors) which is essential in the use of the current 
direct-method procedures. This immediately suggests 
that the method might be considerably enhanced by the 
introduction of further information. A general way of 
doing so is discussed in the next section. 

Use of  constraints 

The electron density function p(r) possesses some 
general features which are more or less independent of 
the particular structure under consideration. For 
example, p(r) must be everywhere positive and bounded 
and must also display atomicity, that is, p(r) should be 
very small almost everywhere and should peak in small 
regions centered at the atomic positions. Whenever 
these general characteristics can be expressed in terms 
of equations they can be incorporated into the 
formalism to force some modeling on the functions 
sought. We have already discussed the particular cases 
of positivity and boundness in a previous section. A 
general and convenient way of dealing with model 
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equations is to incorporate them as constraints with the 
technique of the Lagrange multipliers. 

In this section we shall give a few examples of this 
approach by discussing the introduction of some 
models and also by discussing the simple use of 
constraints that do not necessarily correspond to some 
general property of the electron density function. 

A very useful technique employed to introduce the 
constraints of atomicity is to make the electron density 
function resemble its square. When this condition is 
translated into reciprocal space, the well known Sayre 
equation is obtained. Assuming equal atoms and the 
validity of Friedel's law, Sayre's equation can be 
written 

and also 

6 F * -  ~ (22) 

Since the functional to be minimized must be real 
and C(H) is generally complex, we define M in the 
fo rm 

M=R+Z FcH+c  
H~H 2 2i 

(23) 

Denoting 22 H = pn + iv H, we also have 

S(h) = F(h) - O(h) ~ F(h + k) F*(k) = 0 (17) 
k 

with 

O(h) = f / ( f  * f ) ,  (18) 

where f is the atomic form factor and the symbol * 
denotes convolution. The particular form of (17) 
automatically ensures that Friedel's law is satisfied. 

In the variational formalism the electron density can 
be forced to satisfy a set of Sayre's equations (17) by 
incorporating them into the minimization function with 
the technique of Lagrange multipliers. 

Owing to the particular form of (17) this is better 
formulated in reciprocal space. Since Sayre's equation 
will not be the only type of constraint we shall be 
interested in, we shall consider first a general case of a 
set of complex constraint equations C(H ) = 0 in 
reciprocal space, where H belongs to some given 
domain H, in order to state a few general rules. 

The variation of any functional M (F) of the structure 
factors F should be calculated in terms of the 
independent variations of the real and imaginary parts 
ofF. That is, i fF  = A + iB, 

6M 6M 
6M = ~ 6,4 + ~ 6B. (19) 

6,4 5B 

It is convenient, however, to calculate the variations 
in terms of the two independent variables F and F* 
defined through 

F [a21 a221 ' 

where the a's are complex constants. After all 
variations are calculated in terms of these new variables 
we make the identification a n = a21 = 1, a12 = - - a 2 2  ----- 

i, which renders F* as the complex conjugate ofF. This 
has the advantage that the variations with respect to A 
and B are condensed in just a variation with respect to 
F, so that we have 

6M 6M 5M 
- -  - - -  i - -  ( 2 1 )  
5F 6A 6B 

M = R + ~, (2* C(m + 2 H C~H)). (24) 
HEH 

H denotes the set of the observed structure-factor 
magnitudes. The evolution equation is now 

c3F 6M 
- -  _ - -  ( 2 5 )  

c3t 5F* 

so that M yields a decreasing function of t: 

t3M _ ~ [. 6M t3F(k) 5M 8F*(k) + _ _  

Ot 5F(k) c3t 6F*(k) c3t 

I c°F(k) [ 2 
= - 2  __ ~ ,  I - - ~ 1  < 0. (26) 

k 
The multipliers A n can be set at some given pre- 
assigned values or may be determined by the intro- 
duction of further conditions. In the latter case one can, 
for instance, ask that constraint equations be satisified 
all along the iteration pathway, that is coC(m/Ot = 0, 
H E H. Then 

c3C(m ~-~ [ 6C(m c3F(k) SCm) c~F*(k) ] 
- . ,  - - +  - - - -  = 0 .  

c3t 5F(k) tgt 5F*(k) tgt 

(27) 

This is a homogeneous linear system for the real and 
imaginary parts of the shifts 3M/OF, which in general 
admits non-trivial solutions only if the number of 
unknowns is greater than the number of equations. As 
the number of constraint equations increases, the size 
of the shifts tends toward zero or, in other words, the 
system tends to be frozen by the imposition of too 
many constraints. Inserting the equations for 8F/t3t in 
(27) we obtain a linear system for the Lagrange 
multipliers. It can be shown that if both H and - H  E H 
(as will be always assumed) then 2_ n = 2* when F(H) 
= F * ( - H ) .  

If the number of constraints is large the solution of 
the linear system (27) can be a serious handicap of the 
method. In such cases it would be preferable to fix the 
Lagrange multipliers at some convenient values. To do 
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so we must be sure that each constraint equation has a 
lower bound. If such is not the case a safe procedure is 
to use the functional 

M = R + Y. 4nlC(n)l 2 (28) 
HEH 

instead of (24). When the domain H is extended to the 
whole reciprocal space and each constraint equation is 
given the same weight (all the 4's are equal) the 
functional (28) has the additional property of being 
symmetric in direct and reciprocal space because of 
Parseval's theorem. 

We can now apply these rules to a few particular 
examples to illustrate the use of the formalism. 

(a) Sayre's equations as constraints 

We define the functional 

M = R +  Z [4*S(n , +4nS~n , ]  
HEH 

from which we get 

COM 
- -  -- F(h) - ff'°bs(h) 
F*(h) 

(29) 

+ ~ {4 n O(h - H) - 20(H)  2n F(h -- H)},  
H E l l  

(30) 

which, as indicated by the evolution equation (13), is 
proportional to the shift COF/COt. The equations satisfied 
by the Lagrange multipliers are 

Z [&(K-- H) + 2{20(K)  O(H) 
H E l l  

x Y. F ( K -  h) F(h - H) 
h 

-- [0(H) + O ( K ) ] F ( K -  H)}]4 n 

= -- Y. {O(K-- h ) -  20(K) F ( K - -  h)} 
h 

x [ f (h  -/~'bS(h)]. (31) 

This may not be the best way of dealing with these 
constraints because the linear system (31) has to be 
solved at each step. The procedure of arbitrarily fixing 
the values of the multipliers is not feasible here because 
the constraint terms do not have a lower bound, though 
this can be introduced by further defining p as a 
convenient function of g [for example, expression (11)]. 
Writing the minimization function in the form (28) 

M = R + ~, 4 n l F ( H ) -  O(H) Y F ( H  + k) F*(k)l 2, 
H E H  k 

(32) 

we obtain for the shift 

6M 
- -  - F ( h ) -  b~bs(h) 
~F*(h) 

+ • 4 n S n [ 6 ( h - H ) - 2 0 ( H ) F ( h - - H ) ] .  
H E l l  

(33) 

Note that in contrast to the sum over H, the sum over k 
in (32) runs in principle over all reciprocal space. 

(b) A subset o f  complex (modulus and phase) structure 
factors F' n, H E H, is f ixed 

This is a common problem in protein crystallog- 
raphy when phases in a low-resolution reciprocal-space 
region are determined, for example, by the method of 
isomorphous replacement, and phase extension to a 
larger region is required. We start from 

M = R + Y {4*IF(H) - F ' (H)]  
HEH 

+ 4n[V*(H ) -- F'*(H)] }. (34) 

Then 
cop 

- { p - / ~ +  Y 2*exp(2~ziHr) 
cot H E H 

+ 4nex p (--2mHr)} p. (35) 

The conditions to determine the 2's are 

--~ exp (-2~-/Kr) d 3 r = 0; K E H, (36) 

from which we get 

y [4,~ F(H + K) + 4. F * ( H -  K)I = F { ( p -  p') PtK, 
H E l l  

(37) 

where F{ }x stands for the Fourier transform operator 
and the relation p = g2/4 has been used. Since we again 
assume that i fF(H)  E H then also F ( - H )  E H, 

1 
~. 4 n F ( K  - H) = ~ F { ( p -  P3 PIK (38) 

ricH 

or in matrix notation 

K k =  1 / 2 F { ( p -  p') p}, (39) 

where K is the Karle & Hauptman matrix (whose 
leading terms are the F's which belong to the set H). 
Once the multipliers are determined from this equation, 
they must be inserted into (34) to obtain the shifts to 
the electron density function. In particular, if we fix the 
value of f pd 3 r [which coincides with F(0)], we get 

cop 
- { P - P - f ( P - p 3 p d  3 r /Spd  3r}p.  (40) 

cot 
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(c) The Patterson function from calculated F's should 
resemble the one from observed F°bS's 

This is another potentially useful way of modeling 
the electron density function. If, for example, we ask for 
the calculated Patterson function to be zero on a 
spherical shell around the origin peak, all along the 
refining trajectory, this will prevent electron density 
peaks from coming closer to each other than a certain 
limit. 

Let us consider L points aj, j = 1, . . . ,  L, possibly 
around the origin, at which the observed Patterson map 
is small: 

p°bs(a j )~0;  j---- 1 , . . . , L .  (41) 

We want the calculated Patterson function 

P(a) = ~, F(k) F*(k) cos (2z~ka) (42) 
k 

to be zero at the same points all along the refining 
pathway. Starting from the functional 

L 
M = R + ~. ~j e (a j )  (43) 

j=l 

we get the system of linear equations for the multipliers 

Z {P(aj + a i) + P(a i -a j ) }  2 j=  2{P(ai)-P(ai)} 
J 

(44) 

with 

P(a) = Y IF(h)l IF°bS(h)l cos (2zrha). (45) 
h 

Numerical results 

Several one-dimensional tests were carried out in order 
to assess the numerical behavior of the method. We did 
not intend to perform an exhaustive evaluation of the 
many theoretical possibilities. We shall only report here 
a sample of some interesting results which illustrates 
the power of the procedure and indicates possible lines 
for further research. Numerical methods must be used 
because of the impossibility of solving analytically the 
differential equations. This introduces a problem of 
sampling which is independent of, and must not be 
confused with, the limitations due to experimental 
resolution. In particular, constraint equations of 
Sayre's type are only limited by numerical sampling 
and are independent of the experimental resolution 
which is revealed only on the R term of the minimizing 
functional. When referring to sampling we shall speak 
of grid resolution to differentiate it from the experi- 
mental resolution. In all examples the grid resolution 
was chosen to be such as to render a good atomic 

electron density function. Typically, a grid division of 
0.2 A allows calculations of structure factors with 
relative errors less than 10 -3 from an electron density 
made of Gaussian atoms. More technically, the atomic 
form factors impose a finite band-width which in turn 
determines the grid resolution through Shannon's 
criterion of sampling (Brillouin, 1962). A greater grid 
resolution is useless since Shannon's sampling allows us 
to build the density function at any point in the unit 
cell. This limited band-width is in general a con- 
sequence of the built-in characteristic of the sought- 
after electron density function. For a domain of very 
general functions, like that of the functions satisfying 
only the requirement of positivity, there are no 
restrictions in the band-width and therefore no a priori 
limitations on the grid resolution. 

Equations (15) and (30) were solved by using a 
second-order Runge-Kutta iteration procedure (which 
is somewhat related to the conjugate-gradient techni- 
que) starting from an arbitrary initial electron density 
consistent with the constraints. The step size was 
periodically adjusted after a few iterations to a large 
value satisfying the condition that the minimization 
function should decrease monotonically. 

When the domain H contained more than a few tens 
of reflections, the system of equations (30)--(31) 
showed an extremely slow convergence, so that no 
solution was attained. On the other hand, if only a 
small number of constraint equations were introduced, 
the density function failed to resemble its square with 
the consequence of a proliferation of negative electron 
density regions. Although this method did not prove 
useful for ab initio phase calculations, perhaps it may 
be used in the final stages of phase refinement when the 
initial electron density is known with reasonably good 
accuracy. 

The most interesting results were obtained by using 
Sayre's equations as constraints with all multipliers set 
equal to the same constant value 2. Since the R term 
and the constraint term have similar functional depen- 
dence on the F's, the 2 value was set to unity in order to 
give them the same weight. First a minimization of the 
functional (32) was carried out by the method of 
steepest descent. This method was chosen because it is 
numerically more convenient and also because we are 
only interested in the limiting value of the density 
function when the iteration parameter tends to infinity 
rather than its value along the refinement pathway. A 
one-dimensional, p l, seven equal-atom structure was 
generated and a set of 128 structure-factor moduli was 
calculated from it. Starting from a random initial 
electron density distribution, after about ten iterations 
the crystallographic R factor stabilized at a value of 
26%. The R term and the constraint term in (32) 
dropped from the initial values 0.26 and 2.30 to 4.8 x 
10 -4 and 9.6 x 10 -4, respectively. The solution 
displays the main features of the structure but it is 
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somewhat obscured by the presence of some spurious 
peaks and small negative regions. 

The general behavior of the procedure can be 
understood by analyzing the nature of the contribution 
to the shifts coming from the terms R and S in the 
minimization functional. This is more simply carried 
out for the particular case in which O(h) is a constant. 
In this case, Sayre's equation corresponds to the 
condition 

p _  p2 = 0, (46) 

which is satisfied if p = 0 or p = 1 throughout the unit 
cell. This constraint might be useful in, for example, the 
hypothetical case mentioned by Sayre (1980) in which 
the resolution is low enough for the structure to appear 
to be composed of only two different densities. Also, 
since it gives rise to faster iterative equations, it might 
be useful in the first stages of refinement. Again, 
minimizing the functional 

1 
M = R + 2 f (p _ p2)2 d 3 r (47) 

2V 

could be interpreted as a least-squares fitting of a 
square peaked electron density function to the observed 
data. The shift corresponding to the constraint term in 
(47) is 

Ap ~_ -2p(1 -/9)(1 - 2p). (48) 

It follows that for 

p < 0 then Ap > 0 which makes p ~ 0  
0 < p  <½, Ap<O p~O 
½ < p  <1 ,  Ap>O p ~ l  
p > l ,  Ap<O p ~ l .  

Obviously the constraint term in (47) behaves as a 
contrast device which tends to eliminate peaks smaller 
than ½ and to scale to unity peaks of height greater than 
½. In the case where the electron density is small and 
there is a peak given by the difference term 6R/~p, the 
constraint term tends to inhibit growth of the peak in 
that region. 

Since this competition between terms may not 
always be desirable we tried a combined use of (15) and 
(33) in the following way. A few iterations were 
performed with (15) and the current density function 
was injected as input to (33), which after a few 
iterations was in turn re-injected into (15) and the 
process repeated a few more times. This switching 
scheme always gave the correct solution for any 
arbitrary initial electron density. A centrosymmetric 
solution was avoided either by choosing random initial 
phases or by arbitrarily setting to zero the electron 
density in a substantial fraction of the unit cell. A 
typical result gave an R factor of about 2% with a 
remarkable reproduction of the true electron density 
and the absence of negative regions and noise peaks. 

Discussion 

(a) Sayre's equations are constraints 

Refinement techniques involving the solution of a set 
of Sayre's equations (17) have been proposed by 
Krabbendam & Kroon (1971) and Sayre (1972). 
Sayre's method amounts to a least-squares solution of 
(17) considered as functions of the phases and has been 
successfully applied to phase extension and refinement 
in rubredoxin (Sayre, 1974) and in insulin (Cutfield et 
al., 1975). Because of the assumptions involved in 
deriving it, Sayre's equation is not expected to hold at 
low resolution [however, see the second footnote in the 
paper by Sayre (1975)], and phase refinement requires 
a set of F °bs to a resolution of 1.5 A or better. Also, the 
starting set of phases led to false minima, in the case of 
rubredoxin, when it corresponded to a resolution lower 
than 2.5 A (Sayre, 1974). 

Minimizing the functional (32) is obviously related to 
the method of Sayre but it is fundamentally different in 
one important respect: the electron density with which 
we want to fit our experimental data does satisfy 
Sayre's equation, irrespective of the resolution of the 
F °bs set, because the constraint equation is forced upon 
the calculated F's, in which both'phases and moduli are 
considered as variables. In other words the electron 
density sought is in our case an atomic p function 
which we wish to fit, in the least-squares sense, to the 
experimental data of whatever resolution at our 
disposal. In principle, at least, the method has no 
built-in experimental resolution limitation and might 
therefore prove to have a larger radius of convergence 
than that of Sayre. 

It is interesting to notice the close relationship 
between the use of Sayre's equations as constraints and 
the empirical electron density modification procedure 
of Zwick et al. (1976). The total shift corresponding to 
the functional (47) is 

Ap~_-- ( p -  p")- 2 {p -  (3p2-- 2p3)}, (49) 

which can be interpreted as composed of two con- 
tributions, one from the difference map and the other 
from the filter function of Collins (1975). In fact Collins 
modifies the electron density according to 

p + Ap = 3p 2 -  2p a, (50) 

which gives for Ap the expression between brackets in 
(49). 

(b) Applications of the principle of maximum entropy 
The principle of maximum entropy (PME) has been 

discussed by various authors in connection with the 
problem of obtaining the best electron density function 
consistent with a particular set of data. 

Since the form in which it has been applied is 
amenable to a variational analysis, we consider a 
discussion of it to be of interest in the present context. 
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The entropy, or lack of information, associated with a 
continuous probability density p(x~, . . . ,  XN) of the 
random variables Xl . . . .  , x N is defined, except for an 
additive constant, by 

S = - K  f p ( x l , . . . ,  XN) l n p ( x l , . . . ,  xn) d x l . . ,  dx,,  

(51) 

where K is a positive constant. The PME states that the 
probability distribution P(Xl ,  . . . ,  XN) of the set of 
physical variables xl, . . . ,  XN, not amenable to a 
complete experimental determination, which renders a 
maximum of entropy subjected to whatever is known, 
provides the most unbiased representation of the 
system (Shannon & Weaver, 1949). 

Construction of the electron density function is a 
problem conditioned by lack of information, such as 
limited resolution, errors in the structure-factor mag- 
nitudes and phases, missing phase value, or some 
combination of these. The PME then provides the 
natural framework in which the problem should be 
treated. 

Gull & Daniel (1978) have described a method for 
image reconstruction in radio astronomy which is also 
applicable in X-ray crystallography. The PME is 
applied in the following ways: owing to the lack of 
information one can think of many different electron 
density maps consistent with the data. Each of these 
maps is assigned an entropy value. 

2 
S = - - -  f p(r) In p(r) d 3 r, (52) 

V 

as proposed by Frieden (1972) in connection with 
image-reconstruction techniques. Then, maximizing the 
entropy with the constraint that (1) should be as small 
as possible is equivalent to minimizing the functional 

1 
M = - S  + R = 2 - -  f p(r) In p(r) d 3 r 

V 
1 

+ ~ Y [ I F ( h ) l -  IF°bS(h)L] 2. (53) 
h 

This is a variational problem similar to the ones we 
have already described. From the point of view of our 
approach, S can be thought of as a constraint which 
excludes non-negative functions from the domain of 
argument functions and the question arises whether 
minimizing (53) renders a better p function than 
minimizing (1) with, for example, the condition p = g2. 
This question is not immediately answered by the PME, 
as one would at first sight expect, because the 
expression (52) for the entropy implies that some 
model, by no means unique, has been assumed. To 
show this point we shall describe an alternative 
procedure from the one proposed by Frieden to 
generate possible maps. 

Following Frieden we imagine the unit cell to be 
divided into J equal-sized smaller cells each centered at 
the points rj. The electron density is then represented 
by the sequence of average p values p(~) = pj, j = 1, 
. . . ,  J. Further, the pj values are expressed in terms of 
some elementary unit of electron density or quanta Ap 
in the form 

pj = Nj Ap, (54) 

where Nj is a pure number, and we state the constraint 
that 

J 
Z Nj = N. (55) 

j= l  

To obtain the result of Frieden we imagine that each 
elementary cell is further subdivided into G subcells 
such that G >> Nj for each Z The number of ways a 
given sequence pj can be realized is counted by putting 
every one of the Nj quanta into one of the G 
subdivisions, this being approximately GNJ (because of 
the assumption G >> Nj) and dividing by the number of 
configurations differing only by a permutation of the 
particles 

@ (56) 

Then, since the groups of particles are mutually 
independent, we obtain for the total number 

J C_~J 
W o ( N , , . . . ,  Nj) = I-I (57) 

N~ 
The entropy associated with the sequence is then 

Uj 
S ~_ In Wo = - G  Y nj In (nj/e), nj (58) 

j= l  = ' - G "  

in which Stirling's approximation In N! ~_ Nln (N/e) 
has been used. This result is equivalent to that of 
Frieden except for a multiplicative constant. 

It should be recognized that this way of counting 
different configurations is equivalent to Boltzman 
counting in statistical mechanics. If the counting is 
performed under the different hypothesis Nj ~_ G for all 
j, we obtain Fermi or Bose-Einstein statistics depend- 
ing on whether each one of the G subcells is allowed to 
contain no more than one or any number of quanta. 
The expressions for the entropy are, respectively, 

J 
S ~ _ - G  ~ [ n j l n n j + ( 1 - n j ) l n ( 1 - n j ) ]  (59) 

J=l 
(Fermi), or 

J 
S ~----G ~ [njln n j - - (1  + nj)In (1 + nj)] (60) 

j= l  
Bose-Einstein. 

Clearly there is no a priori physical means to 
determine which of the statistics gives the most 
appropriate model to calculate the entropy associated 
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with electron density maps and preference of a 
particular one should be based on practical 
convenience. 

Moreover it is clear that the three hypotheses from 
which (58)-(60) are obtained are by no means the only 
possible ones. 

Formulas (58)-(60) can be reinterpreted in the light 
of our previous formalism. As was mentioned before, 
rather than maximizing the entropy with the constraint 
that the R term should be as small as possible, we 
consider the functional 

M = R - -  2S, (61) 

where S is any of the entropy expressions (58)-(60), as 
one which incorporates a constraint equation S to the 
fundamental R which we want to maximize. The 
Lagrange multiplier A is then a measure of the allowed 
spread in the error p -/~. 

Expression (58) introduces the constraint of 
positivity. The function p which minimizes (61) satisfies 

1 
p = (p)  exp [ - - ( p -  p')/Al; In (p) = -~- f In pd a r. 

(62) 

For small values of 4, p is approximately/~ wherever 
/~ > 0 and takes small positive values when/~ < 0. For 
A >> 1, p tends to a constant, a result which holds for 
any functional ofp of the form 

f f (p)  d3 r (63) 

with a normalizing condition 

1 
V f p d3 r = constant (64) 

ifp belongs to the domain of continuous functions. 
An expression similar to (59) was obtained by 

Khachaturyan et al. (1981) from thermodynamic 
analogies. Equation (59) seems particularly attractive 
because it puts a bound to the maximum possible value 
of a positive p, which is a physically meaningful 
constraint. 

The last expression for the entropy (60) ensures 
positivity and, as is known from quantum statistics, 
allows for the effect of condensation, a property whose 
implications in the present context are not apparent. 

Three-dimensional calculations were performed to 
compare the results of minimizing the functional (1) 
with the positivity condition p = g2/4, with the results 
of minimizing a functional containing an entropy term 
as in (53). 

A thirteen equal-atom structure with chemically 
realistic bond distances and angles was generated in 
space group P1 and the moduli of the 1183 structure 
factors in the box - 6 < h < 6 , - 6 < k < 6 , 0 < l < 6  
were calculated. The electron density was sampled at 

thirteen sections of 13 x 14 points, thus providing a 
grid resolution of about 0.4 A. The initial calculated 
electron density consisted of the first section of the map 
obtained from the model and the twelve other sections 
with the electron density set at an arbitrary constant 
value close to zero. The first section contained fractions 
of two peaks of the model which permitted the 
automatic fixation of the unit-cell origin. 

Firstly, (15) was solved by iteration. It was rewritten 
in the form 

- 3 p  = ap(p-- p') 

and ct was estimated at each step so as to produce the 
maximum decrease in the minimization function (1). 
Calculation of a was performed by linear search along 
the search direction Ap, as described by Agarwal 
(1978). In fifteen cycles the crystallographic R factor 
dropped from 70 to 12% and the final calculated 
electron density showed the thirteen peaks of the 
structure in their correct positions. The height of the 
peaks was generally incorrect (enhanced for the two 
partially contained in the first section and depressed for 
all others) and there appeared a few small spurious 
peaks, which, however, did not jeopardize the inter- 
pretation of the map. 

Secondly, a similar procedure was carried out 
minimizing [Vl as given by (53). The shifts are in this 
case 

6M 
A p = - - a - - - -  a{(p--p3--A(1--1np)}. 6p 

Several trials, each for a different value of 2 in the range 
between 10 and 10 -1, were performed. For 2 > 1, 
low-contrast solutions were obtained. In particular, for 
2 = 10, the final electron density was flat and 
featureless. On the other hand, very noisy solutions 
corresponded to A = 0.1, which made them uninterpret- 
able in terms of the original thirteen-atom model. For 
A = 1, the final electron density function was of quality 
similar to the one obtained by minimizing (15), as was 
also the computational effort (less than 1 s per cycle on 
an IBM 370/125 computer) and the final R factor. In 
this example there was no advantage in using the 
entropy-containing functional (53) rather than just (1) 
with the constraint of positivity. In the light of our 
previous discussion this seems to indicate that the 
entropy term in (53) corresponds to a model which 
merely enforces positivity on the calculated electron 
density function. 

Three-dimensional tests with realistic macro- 
molecular problems are in progress. 
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Abstraet Introduction 

Willis treatment of anharmonic temperature factors 
including up to fourth-order terms has been generalized 
and incorporated into a conventional full-matrix least- 
squares program. The temperature factor T(S) includ- 
ing the anharmonic vibration effect is formulated in the 
general case using Willis's method. T(S) is based on the 
Cartesian coordinates defined by the three principal 
axes of the harmonic thermal ellipsoid. The simul- 
taneous refinement of the parameters in T(S) with the 
conventional parameters in crystallography, which are 
based on the crystal lattice system, is possible. In order 
to introduce T(S) into conventional full-matrix least- 
squares programs, some other relations were also 
derived, such as that between crystallographic sym- 
metry and T(S), and that among parameters due to 
point symmetry of the atom, and so on. The present 
method was applied to the K and two F atoms in 
KCuF 3 crystals at 296 K with the point symmetries of 
the sites 422, 42m and mm2, respectively, and A1 and 
O atoms in tx-AI20 3 crystals at 2170 K with the point 
symmetries 3 and 2, respectively. The features of the 
potentials of atoms in KCuF 3 crystals correspond very 
well to the peaks on the difference-Fourier maps. After 
the correction for anharmonic vibration, the difference- 
Fourier map around each atom became fiat. It indicates 
that in an accurate electron density study the an- 
harmonic vibration effect is not negligible and the Willis 
method works effectively. 
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Studies on anharmonic vibration have been mainly 
performed by neutron diffraction, since the constant 
value of the neutron cross section prevents steep 
diminution in intensities of high-angle reflexions, and 
since no interaction between aspherical thermal vib- 
rations of nuclei and aspherical electron distribution 
favors the neutron diffraction study. However, recent 
advances in X-ray diffraction have made it possible to 
observe a large number of high-angle reflexions 
accurately. In the recent X-ray study of KCuF a 
(Tanaka & Marumo, 1982), it was shown that the 
interaction between the two asphericities was not so 
severe. And the peaks of the anharmonic vibration 
appeared on a difference-Fourier map after the removal 
of those of the aspherical electron distribution. Thus, 
the main difficulties in the X-ray study of anharmonic 
vibration in crystals where covalency of bonds does not 
play a significant role are believed to be overcome. It 
has become highly necessary and desirable to modify 
the harmonic temperature-factor formalism to that of 
the general temperature factor (GTF), which includes 
the effects of anharmonic vibration of atoms. 

Assuming a crystal to be an assembly of independent 
oscillators, several authors formulated the GTF by 
taking the ensemble average of the one-particle poten- 
tial (OPP). Willis (1969) expressed the OPP as a 
power-series expansion and formulated the GTF for 
atoms with cubic point symmetries. Kurki-Suonio, 
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